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Abstract—Head-shoulder detection is widely used in many
applications, and robust image descriptors are crucial to the
detection performance. In this paper, by exploiting the second-
order region covariance descriptor as a complement to widely-
used histogram-based descriptors, we propose a new two-stage
coarse-to-fine cascade framework to make full use of both types of
descriptors for robust head-shoulder detection. Specifically, in the
first stage, two histogram-based descriptors, i.e., local Histogram
of Oriented Gradients (HOG) and histogram of Local Binary
Pattern (LBP), are utilized by a Viola-Jones classifier to rapidly
reject most non-head-shoulder candidate windows. In contrast,
the second stage further boost the performance via multiple
kernel learning on Riemannian manifold formed by Region
Covariance Matrix (RCM), a second-order statistic descriptor
with stronger discriminative power. Experimental results on a
public dataset demonstrate that our method improves detection
rate significantly with satisfactory detection speed.

I. INTRODUCTION

Head-shoulder detection is an important research topic in

computer vision and is widely used in many applications,

including human tracking [7], people counting (especially in

crowded scenes) [6], [16], and other tasks in surveillance

systems. In many aspects, head-shoulder detection shares

some similarities with pedestrian detection. However, the two

tasks have their inherent differences mainly in that the head-

shoulder part of human is less deformable than the entire

human body and is less often occluded even in crowded

scenes, where pedestrian detectors often suffer from occlusion

problems. On one hand, head-shoulder detection can be seen

as a complement to pedestrian detection for human related

vision tasks. On the other hand, head-shoulder detectors can

also be incorporated into pedestrian detection systems as part

detectors.

Recently, much work has been done on head-shoulder

detection [6], [7], [16], most of which is based on HOG

(Histogram of Oriented Gradients) [2] and LBP (Local Binary

Pattern) [14] features following the sliding-window approach.

However, although HOG feature is effective in describing the

omega-like shape of human head-shoulder and LBP feature

as a texture descriptor further improves the performance, the

detection rate of HOG and LBP based detectors in previous

work is still unsatisfactory for real applications.

It is known that HOG and LBP, as histogram-based de-

scriptors, only describe the distribution of some certain image

properties (e. g. gradient orientation) in a region. In order to

further improve the detection performance, we intend to model

not only such certain image properties (or features) individual-

ly, but also the correlation between them. A natural approach

to modeling the correlation between different features is to

calculate their covariance. Then, the covariances of several

image features inside a region of interest can be used as a

second-order region descriptor. Therefore, we would like to

use Region Covariance Matrix (RCM) [11] as a complement

to HOG and LBP to obtain better performance. However,

RCM descriptor can be computationally expensive compared

with histogram-based descriptors, so using it directly in the

traditional feature extraction-classification process in a sliding-

window approach will largely sacrifice the detection speed.

Another difficulty to use RCM is that non-singular covariance

matrices reside on non-linear Riemannian manifold, so tradi-

tional classification approaches designed for Euclidean space

cannot be applied directly with RCM features.

In this paper, we propose a novel two-stage cascade frame-

work for robust head-shoulder detection, combining the merits

of different descriptors in a coarse-to-fine structure. Based

on HOG and LBP features, the first stage is a Viola-Jones

type classifier [13], which is also a multi-level cascade itself

and can reject more than 99% of non-head-shoulder patches

with high speed. In the second stage, RCMs are extracted

from subwindows of different sizes in the detection windows

that pass the first stage. Since RCM resides on non-linear

Riemannian manifold, we map it onto Euclidean space using

Log-Euclidean distance [1], [15]. Then, we build an effective

classifier using multiple kernel learning [12], with each kernel

defined on one of the subwindows. Since only a very small

fraction of detection windows can pass the first stage and need

further classification, the second stage also runs quite fast.

Experimental results on NLPR-HS [6], a public head-shoulder

dataset, demonstrate that our detection method by incorpo-

rating different types of descriptors in a two-stage cascade

framework improves the detection performance significantly

and achieves satisfactory detection speed at the same time.

The rest of the paper is organized as follows. We present

a review of related work in Section 2. A detailed description

of our two-stage detection framework is given in Section 3.

We show experimental results in Section 4 and conclude our

work in Section 5.

II. RELATED WORK

In general, previous work on the topic of head-shoulder

detection and other objects detection mainly focuses on ex-

ploiting one or more of the following aspects.

A. Better Feature

Viola and Jones successfully used Haar feature for fast

human face detection [13], but it is shown in [6] that Viola-
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Jones classifier based on Haar feature has poor classification

performance in head-shoulder detection. It is also shown in

[6] that SIFT feature is not discriminative enough for head-

shoulder detection.

HOG (Histogram of Oriented Gradients) feature has been

proven to be effective in describing shape and boundary. Dalal

and Triggs first used HOG feature for pedestrian detection

[2]. Li et al. [6] later applied HOG feature in head-shoulder

detection.

LBP (Local Binary Pattern) is also histogram-based region

descriptor and has been widely used for object detection. Wang

et al. [14] improved the performance of pedestrian detection

by combining HOG feature with uniform LBP feature as the

feature set. Zeng and Ma [16] applied multi-level HOG-LBP

feature in head-shoulder detection.

RCM (Region Covariance Matrix) is another type of region

descriptor different from HOG and LBP. As a second order

statistic, RCM is powerful in describing the correlation be-

tween different low-level features, and has been shown to be

effective in pedestrian detection [11] and texture classification

[10]. However, RCMs, as symmetric positive definite matrices,

reside on Sym+ Riemannian manifold rather than Euclidean

space, which makes it difficult and also non-trivial to apply

traditional classification methods directly.

B. Stronger Classifier

The most common classification method is to first divide

the detection window into several subwindows (blocks) and

extract local feature vectors from each subwindow [2], [14],

[16]. Then the feature vectors from different subwindows

are concatenated into one single vector to characterize the

detection window and a SVM classifier can be learned by

using the detection windows as training samples.

Boosting is also widely used for classification. Viola and

Jones [13] used AdaBoost to select local Haar features from

a large pool to build a real-time face detector. Later, Ad-

aBoost was also applied in pedestrian detection by Zhu et
al. to select local HOG features [17]. Based on local RCMs,

Tuzel et al. used LogitBoost on Sym+ Riemannian manifold

for pedestrian detection and achieved promising performance

[11]. However, their approach involves complicated nonlinear

mapping onto tangent space of the Sym+ manifold and is thus

computationally expensive in both training and detection.

Multiple kernel learning [12] is proven to be another ef-

fective classification approach. It learns an appropriate linear

combination of different kernels from training data, and can be

viewed as a method of metric learning in Reproducing Kernel

Hilbert Space (RKHS) by adjusting the weight of each kernel.

Using a nonlinear mapping, multiple kernel learning can be

extended to Sym+ manifold spanned by RCMs [5].

C. Higher Speed

Consisting of coarse-to-fine stages, cascade is a frequently

used method to increase detection speed by rejecting most of

negative detection windows in earlier stages [13], [17]. Other

methods, including integral image [13] and integral histogram
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Fig. 1. The flowchart of our head-shoulder detection framework

[9], are often applied to further speed up the detection by

computing local features more efficiently.

III. PROPOSED METHOD

In our two-stage cascade framework, different types of de-

scriptors and different classification methods are used respec-

tively in each stage. We use a Viola-Jones type classifier based

on local HOG and LBP features in the first stage and quickly

reject over 99% of non-head-shoulder patches. Then, an RCM

based multiple kernel learning classifier is used in the second

stage to further classify the detection windows that have passed

the first stage. Finally, non-maximum suppression is applied

to suppress overlapping detections. Figure 1 illustrates the

process of our head-shoulder detection framework. The size

of detection windows used in our method is 32× 32.

A. HOG-LBP based Viola-Jones Classifier

Viola-Jones classifier [13] is a multi-level cascade classifier

and is used in the first stage of our detection framework to

achieve a high detection rate with high speed. We sample

blocks of various sizes ranging from 6 × 6 to 30 × 30 in

the 32 × 32 detection window. Then, a 36-D HOG feature

vector and a 59-D LBP feature vector are extracted from each

of these blocks. For each level of the cascade classifier, we

train linear SVMs as weak classifiers based on local HOG and

LBP features, then the strong classifier of each level is trained

using AdaBoost.

To compute the HOG feature, each block is further divided

into four rectangle cells, and gradient magnitude of all pixels

in each cell is voted into a histogram divided evenly into 9

bins according to gradient orientation. Histograms of the four

cells are concatenated into a 36-D vector and normalized using

L2 normalization. Details of how to extract HOG feature can

be seen in [2].

To compute the LBP feature, we use LBP 2
8,1. The intensity

of each pixel is compared with its 8 neighboring pixels with

radius 1 (bilinear interpolation is used if the coordinates of a

nearby pixel are not integers), and a binary pattern of eight bits

is extracted. Then, the binary patterns of all pixels in the block

are voted into a 59-D histogram consisting of 58 bins of each

uniform pattern plus 1 bin of all non-uniform patterns, and

normalized using L2 normalization. Details of how to extract
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LBP feature can be seen in [14]. Using integral histogram [9],

both HOG and LBP features can be calculated efficiently.

It is worth mentioning that Zhu et al. [17] used a similar

method to train a Viola-Jones classifier for pedestrian detec-

tion, but only HOG feature is used in their implementation.

However, it is found in our experiments that LBP feature

improves the detection rate significantly for head-shoulder

detection.

B. Region Covariance Matrix (RCM)

RCM is used to further classify the detection windows that

pass the first stage. As we mentioned previously, RCM, as a

second-order region descriptor, is proven to be powerful in

describing the distribution of different low-level features and

the correlation between them. This makes it discriminative for

many tasks including pedestrian detection [11].

To construct RCM, each pixel in a W ×H image patch is

mapped onto a 8 dimensional feature vector as

[x y |Ix| |Iy|
√
I2x + I2y |Ixx| |Iyy| arctan

Ix
Iy

]T (1)

where x and y are pixel coordinates and Ix, Ixx, Iy and Iyy are

intensity derivative of the pixel. Note that this feature mapping

can be calculated efficiently as we only need to compute Ixx
and Iyy , because Ix, Iy ,

√
I2x + I2y and arctan Ix

Iy
of the entire

image have already been computed when extracting HOG

feature in the first stage.

In the second stage of our detection framework, we man-

ually select 59 subwindows of 3 different sizes: 32 × 32,

16× 16 and 8× 8. Two nearby subwindows of the same size

overlap with each other by 50%. Then, the covariance matrix

Cr calculated from the mapped features (1) of all pixels in a

subwindow is used as the descriptor of this subwindow. Note

that although Cr is an 8× 8 matrix, it has only 36 degrees of

freedom due to symmetry.

To make the covariance matrix Cr (which corresponds to

each subwindow) robust to illumination variations, it is further

normalized using the covariance matrix of the whole detection

window,

Ĉr = diag(CR)
−1/2Crdiag(CR)

−1/2 (2)

where CR is the covariance matrix of the whole detection

window and diag(·) means to keep the diagonal entries and

truncate the rest to zero.

For each detection window, we extract its 59 normalized

RCMs from all its subwindows. Although RCM can be

computed using integral image approach [11], we do not

calculate the integral image of the entire image, which is

computationally expensive. Instead, we only calculate the

integral image of the detection window, since only a small

fraction of the image patches can pass the first stage.

C. Multiple Kernel Learning on Riemannian Manifold

An effective classification approach is needed to classify a

detection window using its 59 RCMs. It is well known that

non-singular covariance matrices reside on Sym+ Riemannian

manifold rather than Euclidean space, and concatenating the

columns of an RCM into one vector will ignore the geometry

of the manifold and result in inferior performance [11]. There-

fore, traditional classification approaches like SVM operating

in vector space cannot be applied directly to RCMs.

Fortunately, by exploiting the novel Log-Euclidean distance

[1], one can map points from the Sym+ Riemannian manifold

onto Euclidean space while at the same time preserving

the geometry of the manifold. The Log-Euclidean distance

between two covariance matrices C1 and C2 is defined as

dg(C1, C2) = || log(C1)− log(C2)||F (3)

where log(·) is the matrix logarithm and || · ||F is the matrix

Frobenius norm. The Log-Euclidean distance defines a true

geodesic distance on Sym+ manifold and can be efficiently

computed using eigenvalue decomposition of C1 and C2 [11].

Based on Eq. 3, the Log-Euclidean mapping from a d × d
covariance matrix C to a d(d+ 1)/2 dimensional vector c in

a Euclidean space is defined as

c = vec(log(C)) (4)

where the vector operator vec(·) of a d× d symmetric matrix

X is defined as

vec(X) = [X1,1

√
2X1,2

√
2X1,3 · · ·X2,2

√
2X2,3 · · ·Xd,d]

T

(5)

which takes the upper-triangle part of X and multiplies its

non-diagonal entries by
√
2. It can be easily verified that the

Euclidean distance in the vector space after Log-Euclidean

mapping equals to the geodesic distance in the Sym+ mani-

fold, i.e. ||c1 − c2||2 = dg(C1, C2), and thus the geometry of

the manifold is preserved after the mapping, while traditional

classification approaches can be applied now in the vector

space.

Based on the above Log-Euclidean mapping, we construct

a classifier using multiple kernel learning [12], [5] in the

second stage of our detection framework. Multiple kernel

learning is an effective method to learn a new kernel as a

linear combination of several existing kernels (weights are

non-negative to ensure positive definiteness). It corresponds

to the concatenation of the Reproducing Kernel Hilbert Space

(RKHS) of each kernel, while the different weights of the

kernels scale the metric in their RKHS. Therefore, multiple

kernel learning can be regarded as a method to learn an

appropriate metric in kernel space.

In our approach, we define 59 Gaussian kernels on the 32×
32 detection window, each of which corresponds to one of the

59 subwindows:

Fig. 2. Some typical samples in NLPR-HS dataset
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km(Wi,Wj) = exp(−γ||ci,m − cj,m||22),m = 1, 2, · · · , 59
(6)

where Wi and Wj are detection windows, and ci,m and

cj,m are the Log-Euclidean mapping of the normalized RCMs

extracted from the mth subwindow of Wi and Wj respectively.

Then, a linear combination of these 59 kernels

k(Wi,Wj) =
59∑

m=1

dmkm(Wi,Wj) (7)

can be learned from the training set {(Wi, yi)} through the

following optimization similar to the standard SVM optimiza-

tion:

min
w,d,ξ

1

2
wTw + C1T ξ + σ1Td (8)

subject to yi(w
Tφ(Wi) + b) ≥ 1− ξi, ξ ≥ 0,d ≥ 0 (9)

where φ(Wi)
Tφ(Wj) = k(Wi,Wj) (10)

Here d = [d1, d2, · · · , d59]T is the weight vector, and C is

the training error cost. The L1 regularization on d can avoid

overfitting and enforce sparsity on the weights [12], so that

less kernels are needed to be computed, which helps improve

the detection speed.

The positive training set in the second stage is the same as

that in the first stage, while the negative training set is collected

from the false positives of the first stage. Cross-validation is

used to determine the values of hyper-parameters, including γ
used in Gaussian kernels and σ used in regularization term.

IV. EXPERIMENTS

A. Dataset

Compared with abundant benchmark datasets for pedestrian

detection and face detection, there are few widely used public

datasets for human head-shoulder detection, which makes

it difficult to compare different detection approaches. We

chose the public NLRP-HS dataset [6] to evaluate our head-

shoulder detection framework. With head-shoulder patches
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Fig. 4. The weights of 59 kernels in multiple kernel learning in the 2nd stage

cropped from Internet images, surveillance videos and two

pedestrian datasets (MIT set [8] and INRIA set [2]), the

NLRP-HS dataset consists of 3510 positive samples of size

32 × 32 and 399 head-shoulder-free images for training, and

1812 positive samples and 331 head-shoulder-free images for

testing. It is a challenging dataset, since positive samples have

low resolution and large variations, and are sometimes blurred.

These challenges are often encountered in real applications.

Figure 2 shows some typical samples in this dataset.

B. Training

The HOG-LBP based Viola-Jones classifier in the first stage

was trained level by level using AdaBoost. We sampled 1519

blocks of various sizes from the 32 × 32 detection window.

Then, for each level, we trained 3038 linear SVMs as weak

classifiers (each from one block using HOG or LBP) and used

AdaBoost to build a strong classifier from them. We required

the minimum detection rate of each level to be 0.997 and the

maximum false positive rate to be 0.6. The training process

of the first stage was stopped when the weight of a newly

added weak classifier is below a certain threshold (10−4 in

our implementation).

To train the multiple kernel learning classifier in the second

stage, false positives of the first stage were used as negative

samples and positive samples were directly obtained from the

NLPR-HS training set.

After an initial training of our two-stage detector, we

scanned on the head-shoulder-free images from the training set

and added false positives into the negative training set of the

second stage to retrained the multiple kernel learning classifier.

This retraining process was repeated twice.

The first stage of our final detector consists of 12 levels

and 885 weak classifiers in total (412 HOG-based and 473

LBP-based). Figure 3 shows the numbers of HOG-based and

LBP-based weak classifiers in each level respectively. It can

be seen that the multiple levels in the first stage also follow a

coarse-to-fine structure, and over 90% negative patches can be

quickly rejected in the first 4 levels involving only 34 weak

classifiers.
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The second stage of our final detector involves a linear

combination of 59 different kernels and the weights of these

kernels are shown in Figure 4. It can be seen that there is large

variation between these weights, corresponding to the scaled

metric in the RKHS of each kernel. Moreover, the weights of

9 kernels from 59 ones (15%) are zero, so detection time can

be saved by skipping these kernels.

C. Evaluation and Comparisons

We used Detection-Error Tradeoff (DET) curves with per-

window metric to evaluate the detection performance. On the

test set, the first stage has a detection rate of 91% with a false

positive rate of 1.7×10−3 FPPW, and adding the second stage

reaches a detection rate of 85% with a false positive rate of

10−4 FPPW. Figure 5 shows the DET curves of our detector.

The DET curve of the first stage is obtained by adjusting the

threshold of the final level in the Viola-Jones classifier, and the

DET curve of the whole detector is generated by adjusting the

threshold of the multiple kernel learning classifier. As shown

in Figure 5, the detection rate is significantly improved when

the second-order RCM detector is introduced, which indicates

that it is effective to incorporate RCM feature as a complement

to HOG and LBP for head-shoulder detection.

We then compared our head-shoulder detector with other

methods, and plot the DET curve of each method in Figure 6.

1) HOG AdaBoost: The HOG based AdaBoost detector

was trained and tested on NLPR-HS dataset in [6]. It used

AdaBoost as classification approach similar to the first stage

of our method, but only HOG feature was extracted. The result

is directly obtained from the original paper [6]. DET curves

show that the detection rate of this method is inferior to the

others, which indicates that HOG feature itself is insufficient

in discriminative power for head-shoulder detection.

2) PCA-HOG-LBP SVM: Zeng and Ma [16] used HOG-

LBP feature calculated from manually selected subwindows of

different sizes, and applied PCA to reduce noise and to prevent

overfitting. Then, they used linear SVM for classification and

reported a detection rate of 89% at 10−4 FPPW on their
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Fig. 6. Comparision of our detection method with other methods on NLPR-
HS dataset. See text for details of each method.

own dataset. Since their dataset is kept private, we have

carefully implemented their method and evaluated the method

on the public NLPR-HS dataset with accuracy of 72% at

10−4 FPPW. However, it is worth noting that the two datasets

are largely different in resolution and even in definition of

head-shoulder region. Moreover, while 84 subwindows were

manually selected in their implementation, we only selected

59 subwindows since the sample size (32× 32) of NLPR-HS

dataset is smaller than theirs (48× 64).

3) RCM MKL: The discriminative power of RCM descrip-

tor itself (i.e. only the second stage of our method) is also

evaluated on NLPR-HS dataset. We trained an RCM based

multiple kernel learning classifier for head-shoulder detection

and tested its performance. As shown in Figure 6, the detection

rate of this method is superior to the HOG-LBP based SVM

detector [16] at 10−4 FPPW. However, the detection speed is

too slow (over 31 seconds per frame) for practical use.

4) Concatenated-RCM SVM: In this approach, the first

stage is the same Viola-Jones classifier as in our detection

framework, but in the second stage, the 36-D covariance

vectors (obtained through Log-Euclidean mapping) of the

59 subwindows is concatenated into a 2124-D vector and

a Gaussian kernel SVM is trained for classification. Note

that by concatenating feature vectors from all subwindows

followed by one Gaussian kernel, the resulting kernel space

is essentially the tensor product of the Reproducing Kernel

Hilbert Space (RKHS) of all Gaussian kernels defined on

each subwindow, so its dimensionality should be much higher

compared with the linear combination of such kernels learned

through multiple kernel learning. In our experiment, however,

we evaluated the performance of this approach and found it

inferior to the multiple kernel learning approach. This may

be explained by the fact that multiple kernel learning not

only concatenates the RKHS of the kernels but also scales

the metric, and that too high dimensionality often causes

overfitting.

Through above comparisons, it is shown that our method us-

ing different types of descriptors in a coarse-to-fine two-stage
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Fig. 7. Some detection results on ETH Pedestrian Dataset

cascade framework is effective for head-shoulder detection.

D. Experiment on ETH Pedestrian Dataset

To evaluate the generalization ability of our method, we

also tested our detector on ETH Pedestrian Dataset [4]. Some

of the detection results are shown in Figure 7. It can be seen

from Figure 7 (a) (c) that our detector can still successfully

detect the head-shoulder part of pedestrians when the body is

occluded, whereas a pedestrian detector may fail in such cases

due to occlusion. Since the performance of most pedestrian

detectors is disappointing for partially occluded pedestrians

[3], our head-shoulder detector can be used as a complement to

pedestrian detectors to improve their performance in occluded

scenes, as the head-shoulder part of pedestrians is less likely

to be occluded.

E. Speed Issue

The detection speed is often as important as the detection

rate in real applications. Although it can be time-consuming to

use Log-Euclidean mapping and Gaussian kernels, by building

a fast Viola-Jones classifier based on HOG and LBP features

extracted using integral histogram, we are able to rapidly

reject most of negative detection windows in the first stage

so a lot of time is saved. In our CPU implementation using

C++, we achieved a detection speed of 6 fps (frame per

second) on 320 × 240 images on a laptop computer (with

Intel Core i5 CPU and 4GB memory), which is satisfactory for

most applications including head-shoulder tracking and people

counting in crowded scenes. For applications requiring a

higher speed, one can build a real-time head-shoulder detector

on GPU using our method. Here we also note that the detection

speed of an HOG and LBP based Viola-Jones classifier (simply

removing the second stage in our detection framework) reaches

11 fps but with inferior detection rate, as shown in Figure 5.

V. CONCLUSION

We have proposed a novel two-stage cascade framework

for robust head-shoulder detection in this paper. Using HOG

and LBP as histogram-based region descriptors, the first stage

of Viola-Jones classifier quickly rejects over 99% of non-

head-shoulder detection windows and ensures relatively high

detection speed, while the second stage exploits the correlation

between different image properties using RCM as a second-

order region descriptor and multiple kernel learning as an

effective classification method. We combine the merits of

different types of region descriptors by incorporating them in

the coarse-to-fine two-stage cascade framework. Experimental

results on a public head-shoulder dataset have demonstrated

that our method improves the detection rate significantly with

satisfactory detection speed, and has the potential to be used

as a complement to pedestrian detectors in occluded scenes.
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